英文字典中文字典


英文字典中文字典51ZiDian.com



中文字典辞典   英文字典 a   b   c   d   e   f   g   h   i   j   k   l   m   n   o   p   q   r   s   t   u   v   w   x   y   z       







请输入英文单字,中文词皆可:


请选择你想看的字典辞典:
单词字典翻译
Tanging查看 Tanging 在百度字典中的解释百度英翻中〔查看〕
Tanging查看 Tanging 在Google字典中的解释Google英翻中〔查看〕
Tanging查看 Tanging 在Yahoo字典中的解释Yahoo英翻中〔查看〕





安装中文字典英文字典查询工具!


中文字典英文字典工具:
选择颜色:
输入中英文单字

































































英文字典中文字典相关资料:


  • Knowledge Graph Convolutional Networks for Recommender Systems
    Convolutional Networks (KGCN) for recommender systems The key idea of KGCN is to aggregate and incorporate neighborhood in-formation with bias when calculating the representation of a given entity in the KG Such a design has two advantages: (1) Through the operation of neighborhood aggregation, the local proximity struc-
  • KGCN — RecBole 1. 2. 1 documentation
    For each item, aggregate the entity representation and its neighborhood representation into a single vector Parameters: user_embeddings (torch FloatTensor) – The embeddings of users, shape: [batch_size, embedding_size]
  • GitHub - hwwang55 KGCN: A tensorflow implementation of . . .
    KGCN is Knowledge Graph Convolutional Networks for recommender systems, which uses the technique of graph convolutional networks (GCN) to proces knowledge graphs for the purpose of recommendation
  • 【论文笔记】KGCN:知识图谱 + 图卷积神经网络的推荐系统 - 知乎
    原文提出一种融合 KG 特点与 图卷积神经网络 的模型(KGCN),也就是在计算 KG 中某一个给定的 entity 的表示时,将邻居信息与偏差一并结合进来。主要体现出如下的优势:
  • KGCN_基于知识图谱的推荐系统(KG+GCN) - CSDN博客
    今天,我们将深入探索一个在推荐系统领域内引发变革的开源项目——KGCN-pytorch,这是基于Pytorch实现的知识图谱卷积网络(KGCN)在推荐系统的创新尝试。
  • Neighborhood contrastive representation learning for . . .
    Neighborhood Contrast Module utilizes a region-level contrastive learning method to improve the quality of extracted node representation by maximizing the similarities of top K nearest neighbor nodes, i e , positive pairs, and minimizing the similarities of other nodes, i e , negative pairs
  • KGCN: Knowledge Graph Convolutional Networks for Recommender . . .
    KGCN은 모델 $\mathcal{F}$의 parameter $\boldsymbol{\Theta}$와 $Y,G$를 사용하여 임의의 유저 $u$와 item $v$간의 상호작용을 binary classification하도록 고안되었고 아래 식과 같이 쓸 수 있습니다 $$\hat{y}_{uv}=\mathcal{F}( u,v | \boldsymbol{\Theta},Y,G)$$





中文字典-英文字典  2005-2009